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FOREWORD 

This is a special technical report of a study conducted by the 

Electrical Engineering Department under the auspices of the Auburn 

Research Foundation toward the fulfillment of the requirements pre- 

scribed in NASA Contract NAS8-20557. A procedure for the design of 

a S-bard diode phase shifter is presented. 
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ABSTRACT 

A ring-hybrid microwave (S-band) phase shifter providing quantized 

phase shifts has been designed, analyzed, fabricated, and tested. The 

smal',eat phase sh i f t ing  increments of 22.5" were, at the time of the design, 

the smallest increments yet available. This ring-hybrid design makes 

possible additional small phase shift increments without significant 

increase in loss .  

a transformer, and a length of open transmission line acting as a 

reactive element for tuning. 

desired phase increments, and criteria were developed for optimum 

circuit design of the elements. 

compensation for diode manufacturing variations. Cost is held to a 

minimum by use of relatively low-cost diodes. 

The phase shift element consists of a PIN diode, 

The Smith Chart was used to design the 

The strip-line design technique permits 

To verify these design criteria, a four-bit diode phase shifter 

for 1.8 GHz was constructed. The phase shifter, which consisted of a 

180°, a goo, a 4 5 O ,  and a 22.5 

phase shifts of 360° in 22.5O increments are available. 

loss proved to be approximately 1.2 db with a nominal voltage standing- 

wave ratio of 1.25:l. 

0 phase bit, was constructed such that 

The insertion 
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I -  
THE DESIGN OF AN S-BAND DIODE PHASE SHIFTER 

E. R. Graf and J. W .  Rogers 

I. INTRODUCTION 

Advances i n  space exp lo ra t ion  and high-veloci ty  v e h i c l e s  have 

c rea t ed  a need f o r  t r ack ing  antensas with s t e e r a b l e ,  narrow beams 

and high ga ins .  To f u l f i l l  these needs, r e f l e c t o r  type antennas which 

have such p r o p e r t i e s  have been developed. However, t hese  antennas a r e  

l a r g e ,  some having diameters i n  the  order  of 300 f t .  

beam width a r e  d i r e c t l y  r e l a t e d  t o  diameter, f u r t h e r  improvement would 

r e q u i r e  s t i l l  l a r g e r  s t r u c t u r e s .  Y e t ,  f u r t h e r  i nc rease  i n  diameters 

becomes q u i t e  c o s t l y ;  t h e r e f o r e ,  a t t e n t i o n  has turned toward phased 

a r r a y s .  With phased a r r a y s ,  narrow beam width and high ga in  can be 

achieved through s u i t a b l e  c o n t r o l  of t he  sub rad ia to r s ,  and t h e  beam 

can be s t ee red  by t h e  proper con t ro l  of t h e  phase of each subrad ia to r .  

Since g a i n  and 

Antenna a r r a y  theory shows t h a t  through the  proper spacing of  

s u b r a d i a t o r s ,  and the phasing of cu r ren t s  i n  each subrad ia to r ,  a 

d i r e c t i o n a l  r a d i a t i o n  p a t t e r n  can be obtained which w i l l  have a small  

beam angle  when compared t o  t h a t  of a s i n g l e  sub rad ia to r .  It i s  t h i s  

p r o p e r t y  which has made a r r a y s  a t t r a c t i v e  i n  many communication problems. 

The a r r a y  may be made up of d ipo le s ,  parabol ic  d i shes ,  horns,  o r  any 

o t h e r  type of fundamental r a d i a t o r ;  and an a r r a y  which i s  made up of 

t h e s e  fundamental r a d i a t o r s  w i l l ,  of course,  possess d i r e c t i o n a l  

p r o p e r t i e s  . 
1 

A 
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Even though an advantage i s  gained when s i g n a l s  arrive a t  t h e  

antenna a r r a y  from i t s  prefer red  d i r e c t i o n ,  i t  is  l o s t  f o r  s i g n a l s  

a r r i v i n g  i n  o the r  than the  prefer red  d i r ec t ion .  

receive these  s i g n a l s , e i t h e r  t he  a r ray  would have t o  be moved phys ica l ly  

o r  the directio~s1 proper ty  o f t h e  a r ray  w o u l d  have t o  be a l t e r e d .  Since 

phys ica l  movement of an  a r r a y  presents  mechanical problems, it i s  

gene ra l ly  avoided. 

p lane  of t h e  a r r a y  may be s h i f t e d  by c o n t r o l l i n g  t h e  phase of each 

subrad ia to r .  

c o n t r o l  and , therefore ,has  become an important area of study. 

Hence, i n  order  t o  

On the  o ther  hand, t he  beam angle  r e l a t i v e  t o  t h e  

This method o f f e r s  many advantages over mechanical 

Because of t h e  advantages t h a t  a r r a y s  o f f e r ,  phase c o n t r o l  devices 

have rece ived  much a t t e n t i o n .  These c o n t r o l  devices can, i n  genera l ,  

be c l a s s e d  i n  two ca tegor i e s ,  One category u t i l i z e s  mechanical means 

t o  c o n t r o l  o r  s h i f t  phase,  whi le  the o ther  accomplishes t h i s  e lec t ron-  

i c a l l y .  Although t h e  mechanical phase s h i f t e r s  are genera l ly  s impler ,  

t h e r e  are c e r t a i n  l i m i t a t i o n s  imposed on t h e i r  usefu lness  because of 

t h e i r  mechanical i n e r t i a .  E lec t ronic  phase s h i f t e r s ,  on the  o the r  

hand, no t  only completely e l imina te  mechanical d i f f i c u l t i e s ,  but they a l s o  

have an  a d d i t i o n a l  advantage i n  scan speed. Even though the  t rend  has  

been toward e l e c t r o n i c a l l y  con t ro l l ed  phase s h i f t e r s ,  both remain as 

s a t i s f a c t o r y  phase c o n t r o l  methods, and the  choice i n  any given s i t u a t i o n  

i s  d i c t a t e d  by app l i ca t ion .  

problem, both methods are considered b r i e f l y .  

I n  view of t h e  d i sc re t iona ry  na tu re  of t he  
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A. Mechanical Phase S h i f t e r s  

Obviously, phase s h i f t s  can be achieved by an a c t u a l  change i n  

t h e  electrical length of a transmission l i n e .  I n  t h i s  case, advantage 

i s  taken of the  f i n i t e  v e l o c i t y  c i f  an e l e c t r m a g z e t i c  wzt7e GI? a t rans-  

mission line. By inc reas ing  t h e  length of t h e  line, a t i m e  delay i s  

imposed on t h e  wave; thus ,  t he  t i m e  delay,  as viewed from any re ference  

p lane ,  appears as a change i n  phase. One example of such a phase s h i f t e r  

i s  the  "trombone" type where s l i d i n g  con tac t s  allow t h e  electrical 

length  of a l i n e  t o  be changed as a r e s u l t  of an ex tens ion  o r  con t r ac t ion  

of t h e  "trombone" sec t ion .  Another type, very s i m i l a r  t o  t h e  "trombone," 

accomplishes t h e  phase change by gang shor t ing  t h e  two coupled p o r t s  

of a hybrid- junct ion.  For the  hybrid- junct ion phase s h i f t e r ,  t he  phase 

of t h e  output  relative t o  t h e  input  i s  determined by t h e  p o s i t i o n  of 

t h e  ganged s h o r t s ;  consequently,  t h e  phase i s  changed by moving the  

s h o r t  pos i t i ons .  

A type of phase s h i f t e r  which does not  use d i f f e r e n t i a l  lengths  

of l i n e  as phase elements i s  described by Fox.' 

c o n s i s t s  of two s t a t i o n a r y  quarter-wave p l a t e s  w i th  a r o t a t a b l e  180' 

phase d i f f e r e n t i a l  p l a t e  between them. The funct ions  of t he  quar te r -  

wave p l a t e s  are t o  convert  linear po la r i za t ion  i n t o  c i r c u l a r  po la r i -  

za t ion .  

The Fox phase s h i f t e r  

The 180' phase d i f f e r e n t i a l  p l a t e  produces a 180' phase 

d i f f e r e n t i a l  between two orthogonal po la r i za t ions .  Thus, a l i n e a r l y  

p o l a r i z e d  wave is  converted i n t o  a c i r c u l a r l y  polar ized  wave by the  
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f i r s t  quarter-wave p l a t e .  

upon the  180' phase d i f f e r e n t i a l  s ec t ion ,  which, i n  e f f e c t ,  reverses  

the  sense of r o t a t i o n  of t h e  c i r c u l a r l y  polar ized  wave. The wave i s  

then converted back i n t o  a l i n e a r l y  polar ized  wave by the  second quar te r -  

wave p l a t e .  It i s  important t o  note t h a t  i n  t h i s  scheme the  instantaneous 

phase of t h e  input  t o  t h e  second quarter-wave p l a t e  i s  synonymous 

wi th  i t s  instantaneous po la r i za t ion .  

of t he  second quarter-wave p l a t e  i s  dependent upon the  s p a t i a l  

o r i e n t a t i o n  of the  input .  Therefore, a changein  s p a t i a l  o r i e n t a t i o n  

caused by r o t a t i n g  the  180' phase d i f f e r e n t i a l  s e c t i o n  by 8 degrees 

appears  a t  t h e  output  of t he  second quarter-wave p l a t e  as a phase change 

of 28. 

The c i r c u l a r l y  polar ized  wave impinges 

Thus, t h e  t i m e  phase of t h e  output 

Another i n t e r e s t i n g  phase s h i f t i n g  apparatus  was devised by 

r a d i o  astronomers. 

makes use of t h e  proper ty  t h a t  t h e  ve loc i ty  of propagation of an 

electromagnet ic  wave i s  s lowed down i n  d i e l e c t r i c  materials which have 

a p e r m i t t i v i t y  g r e a t e r  than t h a t  of a i r .  

rod i n t o  and out  of t h e  in tense  e l e c t r i c  f i e l d  a t  the  c e n t e r  of a 

wave guide,  t h e  phase a t  the  output can be con t ro l l ed  by v i r t u e  of 

t h e  change i n  e f f e c t i v e  propagation ve loc i ty .  

Their  scheme , much l i k e  t h e  length- of- l i n e  type ,  

By r o t a t i n g  a d i e l e c t r i c  

A s l i g h t l y  d i f f e r e n t  approach, y e t  one which makes use of mechanical 

I n  t h i s  ca se ,  an a r r a y  of h e l i c a l  r o t a t i o n ,  i s  descr ibed by Mi l le r .3  

antennas is  cons t ruc ted  such t h a t  one h e l i x  is  f ixed ,  t h e  next  i s  

r o t a t i n g  wi th  angular  ve loc i ty  (u, the  next  a t  2c0, e t c .  The phase 
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d i f f e r e n c e  between adjacent  elemeats i s  at, such t h a t  t h e  phase d i s t r i -  

bu t ion  over t h e  a r r a y  i s  determined by t h e  angular  v e l o c i t y  CD. 

This method cannot be c l a s s e d  a s  a phase s h i f t e r  i n  t h e  normal sense; 

however, i t  must be remembered t h a t  t he  phase is con t ro l l ed  even though 

t h e r e  is  not  an "input" o r  an "output" po r t .  

Although t h e  above mentioned mechanical phase s h i f t e r s  a r e  not  

a l l  t h a t  have been described i n  the l i t e r a t u r e ,  they a r e  representa-  

t i ve  of b a s i c  approaches t o  the  problem. Several  o t h e r s  were found 

which u t i l i z e d  d i f f e r e n t  techniques; however, the fundamental concept 

i n  each of  t hese  cases  was s i m i l a r  t o  those described. 

The o v e r a l l  performance and u t i l i t y  of t he  mechanical phase 

s h i f t e r  i s  adequately summarized by Schnitken, who s t a t e s :  

Most mechanical phase s h i f t e r s  a r e  extremely accu ra t e  
and s u f f e r  l e a s t  from v a r i a t i o n  i n  frequency, tempera- 
t u r e ,  and power l e v e l .  Their mechanical i n e r t i a  is  
considerably less than t h a t  of t he  e n t i r e  antenna 
s t r u c t u r e ,  b u t - n e v e r - t h e l e s s h i g h  enough t o  l i m i t  scan 
ra tes  t o  about 5 mil l iseconds per beam width. 4 

B. Non-mechanical Phase S h i f t e r s  

Because of  t h e  l imited scan r a t e s  imposed by the  i n e r t i a  of  

mechanical phase s h i f t e r s ,  e f f o r t s  have turned toward developing 

i n e r t i a l e s s  phase s h i f t e r s .  A s  a r e s u l t  of t h i s  work, two methods have 

evolved which o f f e r  improved scan r a t e s  through e l e c t r o n i c  c o n t r o l  of 

t h e  phase. These two methods, employing f e r r i t e s  and diodes,  evolved 

through fundamental research i n  ma te r i a l s  r a t h e r  than through changes 

i n  technique.  
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The u s e f u l  proper ty  of f e r r i t e  as a material i s  i t s  e f f e c t i v e  

permeabi l i ty  (p) which can be con t ro l l ed  by m e a n s  of magnetic b ias .  

Since t h e  v e l o c i t y  cons tan t  of any m a t e r i a l  i s  propor t iona l  t o  the  

product ~ E ( E  i n  f e r r i t e s  i s  cons tan t ) ,  

increased o r  decreased by varying the  magnetic b ias .  

of v e l o c i t y  c o n t r o l ,  t he  phase of the  wave upon emergence from such 

material can be advanced o r  re tarded as a func t ion  of magnetic b i a s .  

Most o f t en ,  t h e  f e r r i t e  phase s h i f t e r  c o n s i s t s  of a f e r r i t e  sample placed 

i n  a wave gu ide ,o r  i n  a transmission l ine,around which is  placed a 

c o i l .  

exc i t ed  by a d i r e c t - c u r r e n t  source. A t y p i c a l  f e r r i t e  phase s h i f t e r  

used a t  9100 Mc i s  descr ibed by Reggia and Spencer.6 

s h i f t e r  i s  capable  of producing approximately 250' of phase s h i f t  per  

inch  of f e r r i t e  wi th  reasonably low zero-bias  i n s e r t i o n  loss .  

then  the  wave v e l o c i t y  can be 

A s  a consequence 

The func t ion  of t h e  c o i l  i s  t o  fu rn i sh  magnetic b ias  when it  is 

This phase 

More r e c e n t l y ,  a d i g i t a l  l a tch ing  f e r r i t e  phase s h i f t e r  has  

been developed. It c o n s i s t s  of s eve ra l  s ec t ions  of small rec tangular  

o r  c i r c u l a r  f e r r i t e  samples through which a c o n t r o l  w i r e  has been 

threaded. These f e r r i t e  samples are  placed i n  waveguides o r  t rans-  

mission l i n e s  where they are i n  the pa th  of an electromagnet ic  wave. 

These f e r r i t e  samples have only two magnetic states, and can only be 

changed by proper e x c i t a t i o n .  Each state corresponds t o  a p a r t i c u l a r  

phase s h i f t ;  thus ,  

phase d i f f e r e n t i a l .  

i s  made p o s s i b l e  by the  c o n t r o l  wire. 

c o n t r o l  w i r e ,  phase d i f f e r e n t i a l s  can be obtained. Whicker and Jones 

a change i n  magnetic s ta te  produces a d i s c r e t e  

Control  of the magnetic state of the  f e r r i t e  sample 

Through proper puls ing  of the  
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1 .  
d e s c r i b e  such a phase s h i f t e r ,  which ope ra t e s  a t  5.45 G c . ~  

the p r o p e r t i e s  enumerated bylllhicker and Jones,  t h i s  method appears t o  

warrant  f u t u r e  study. 

Considering 

There are some c h a r a c t e r i s t i c s  of fe r r i te  which do not lend 

themselves w e l l  t o  app l i ca t ion .  I n  g e n e r a l ,  f e r r i t e s  are phase 

sensitive t o  temperature,  frequency, and power level. The degradat ion 

of  phase r e s u l t i n g  from environmental cond i t ions  poses some l i m i t a t i o n  

on t h e i r  usefulness:  however, progress i s  being made toward minimizing 

8 t h e  environmental effects by a l t e r i n g  the  composition o f  t h e  ferri te.  

In  s p i t e  of t hese  l i m i t a t i o n s ,  ferrites can be p r o f i t a b l y  used i f  proper 

a t t e n t i o n  i s  given t o  s t a b i l i z a t i o n .  

The second of t h e  two, t he  d i s c r e t e  diode phase s h i f t e r ,  has 

b a s i c a l l y  t h r e e  conf igu ra t ions  by which phase can be con t ro l l ed .  

One conf igu ra t ion  i s  arranged So t h a t  d i f f e r e n t  l eng th  t ransmission 

l i n e s  are switched i n  and out  simultaneously,  and t h e  length d i f f e r e n t i a l  

r e s u l t s  i n  a phase s h i f t .  I n  t h i s  scheme, i t  i s  ev iden t  t h a t  t h e  diodes 

act as simple on-off switches;  thus,  i n  order  t o  maintain matched 

cond i t ions  a t  the  inpu t  and output of t h e  phase s h i f t e r ,  fou r  diodes 

p e r  phase b i t  are required.  

A second method can be devised by the  p e r i o d i c  loading of a 

t r ansmiss ion  l i n e  a t  quarter-wavelength intervals. 

i d e n t i c a l  reactances,which are posi t ioned one-quarter wavelength a p a r t ,  

are switched i n  and out  simultaneously. This method r e q u i r e s  two 

d iodes  p e r  phase b i t ;  however, the p o s s i b l e  phase d i f f e r e n t i a l  p e r  

b i t  i s  r e l a t i v e l y  small  (= 22O). 

are requ i r ed  f o r  a complete 360 

I n  this  case, 

Thus, a l a r g e  number of p a i r s  of diodes 

0 s h i f t  c a p a b i l i t y .  

I 
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A t h i r d  a l t e r n a t i v e  f o r  producing phase s h i f t  i s  the  r e f l e c t i o n  

Phase c o n t r o l  by this  method i s  achieved by c o n t r o l l i n g  the 

I m p l i c i t  i n  

method. 

e f f e c t i v e  terminat ion impedance of a t ransmission l i n e .  

t h i s  scheme i s  the  n e c e s s i t y  of decoupling t h e  i n c i d e n t  from t h e  

r e f l e c t e d  wave i n  o rde r  t o  maintain a matched input .  

be instrumented w i t h  a d i r e c t i o n a l  coupler.  One d i s t i n c t  advantage of  

t h i s  method i s  t h a t  any s h i f t  from 0 t o  180' can be obtained with only 

two diodes. Since t h i s  i s  the proposed method f o r  s tudy,  o t h e r  

advantages w i l l  be discussed later. 

Decoupling can  

Continuous phase s h i f t e r s  using the  capaci tance property of 

reverse-biased v a r a c t o r  diodes have a l r eady  received some a t t e n t i o n .  

Since t h e  junc t ion  capaci tance of a v a r a c t o r  diode i s  a func t ion  of 

b i a s ,  t he  e f f e c t i v e  capaci tance can be changed by varying the  reverse- 

bias level. Normally, t h i s  reactive change i s  u t i l i z e d  as a change i n  

t e rmina t ing  impedance of a transmission l i ne .  Thus, t h i s  type of 

phase s h i f t e r  belongs i n  t h e  r e f l e c t i o n  phase s h i f t e r  category. 

features of t h e  v a r a c t o r  diode which complicate p r e c i s e  c o n t r o l  of  

phase are t h a t  t h e  capaci tance i s  a non-l inear  func t ion  of b i a s ,  and 

t h a t  t h e  effective capaci tance i s  inf luenced by power l eve l .  

The 

There are c e r t a i n  o t h e r  p rope r t i e s  of t h e  diode phase shifters 

which must n o t  be overlooked. F i r s t ,  compared t o  t h e  f e r r i t e ,  t h e  

d iode  phase s h i f t e r  i s  much l i g h t e r ,  because magnetic c i r c u i t s  are 

r e q u i r e d  f o r  b i a s i n g  t h e  f e r r i t e s ,  whereas diodes are biased by simple 

connections.  Second, t he  diode phase s h i f t e r  r e q u i r e s  less d r i v i n g  
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power than does the ferrite phase shifter; however, a notable exception 

to this is found in the new ferrite latching phase shifter. In the 

ferrite latching phase bits, high energy pulses are necessary, but the 

average power is low. Third, the ferrite phase shifters are sensitive 

to temperature, whereas the diode phase shifters are relatively insensitive 

to environmental temperature. 

shifters are quite competitive with respect to weight, driving power, 

and temperature sensitivity. 

Thus, it can be seen that diode phase 

The purpose of this study is to explore the reflection method of 

phase shifting, and to present a method of analyzing and constructing 

a diode microwave phase shifter. 

phase shifter was constructed and tested. Operational data are 

furnished which confirm the theory. 

To validate the theory, an S-band 



11. GENERAL THEORY 

I 
I 

A. Hybrid Ring 

It i s  w e l l  known t h a t  a transmission l i n e  terminated i n  o the r  than 

i t s  c h a r a c t e r i s t i c  impedance w i l l  r e f l e c t  energy, and t h a t  t h e  r e f l e c t e d  

energy i s  cha rac t e r i zed  by a r e f l e c t i o n  c o e f f i c i e n t .  Normally, t h e  

r e f l e c t i o n  c o e f f i c i e n t  is def ined a s  t h e  r a t i o  of  r e f l e c t e d  vo l t age  

(or  cu r ren t  ) t o  t he  inc iden t  vol tage (or  c u r r e n t ) ,  and it  i s , i n  

genera1,a complex q u a n t i t y .  For a s inuso ida l  e x c i t a t i o n ,  the equation 

expresses  t h e  reflec ion  c o e f f i c i e n t , r  , i n  terms of t h e  c h a r a c t e r i s t i c  

impedance of t he  t ransmission l i n e  (Zo),  and the terminat ing impedance 

(ZT).  

examination of equat ion (1) f o r  a f ixed value of Zo and a v a r i a b l e  

complex impedance ZT w i l l  show t h a t  t h e  magnitude of the r e f l e c t i o n  

c o e f f i c i e n t  w i l l  l i e  between zero and one (0 -Ir I 5 1). 

examination w i l l  a l s o  show t h a t  t h e  l i m i t s  on angle  8 of the r e f l e c t i o n  

c o e f f i c i e n t  a r e  given by 0 5 

ang le  of  r d e p e n d  on ZT. 

i t  i s  evident  t h a t  t h e  r e f l e c t e d  wave i s  the inc iden t  wave s h i f t e d  by 

t h e  angle e and decreased by Ir 1 .  I f  ZT is v a r i a b l e ,  then the phase 

I n  the  case of a l o s s l e s s  transmission l i n e ,  where Zo is r e a l ,  

< 
Further  

8 5 180°, and both the  magnitude and the  

From the d e f i n i t i o n  of r e f l e c t i o n  c o e f f i c i e n t ,  

I 

10 
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I 

o f  the  r e f l e c t e d  wave relative t o  the inc iden t  wave i s  a l s o  v a r i a b l e .  

It might be mentioned, i n  passing, t h a t  coupling of the r e f l e c t e d  

energy t o  another t ransmission l i n e  w i l l  va ry  t h e  phase of t h e  wave on 

the l i n e  t o  which the  energy i s  coupled r a l a t i v e  t o  the  inc iden t  wave 

i n  a manner d i c t a t e d  by ZT; and, f u r t h e r ,  i f  t he  inc iden t  wave i s  

considered the  inpu t  t o  the  coupling device,  and t h e  r e f l e c t e d  wave t h e  

output ,  t h e  coupling device and the appropr i a t e  Z 

s h i f t e r .  Normally, i t  i s  des i r ab le  f o r  a phase s h i f t e r  t o  a l t e r  t h e  

phase only,  and no t  t o  a f f e c t  t h e  amplitude. Subject t o  t h i s  condi t ion,  

ZT can be v a r i e d  only t o  the ex ten t  t h a t  t h e  angle of r e f l e c t i o n  c o e f f i -  

c i e n t  i s  v a r i a b l e ,  and t h e  magnitude of t h e  r e f l e c t i o n  c o e f f i c i e n t  is a 

c o n s t a n t .  

p o s s i b l e  because any dev ia t ion  o f  17 1 from 1 rep resen t s  a loss  between 

i n p u t  and output .  Obviously, these c o n s t r a i n t s  a r e ,  i n  t he  exact  sense,  

impossible t o  achieve except i n  s p e c i a l  cases;  however, acceptable  

approximations a r e  poss ib l e .  

c o n s t i t u t e  a phase T 

It i s  a l s o  d e s i r a b l e  t o  keep 1 r 1 a s  c l o s e  t o  u n i t y  as 

A s  mentioned previously,  i t  is necessary t o  have a device which 

couples  t h e  r e f l e c t e d  energy from t h e  input  l i n e .  From a t ransmission 

l i n e  s tand po in t ,  i t  i s  important t h a t  t h e  input  no t  be a f f e c t e d  by 

t h e  r e f l e c t e d  wave, and t h a t  matched cond i t ions  a r e  met a t  both t h e  

i n p u t  p o r t  and the  output po r t .  A hybrid r i n g  s a t i s f i e s  t hese  

c o n d i t i o n s  and i s  considered i n  t h e  following paragraphs. 

Before proceeding wi th  the  a n a l y s i s  of a hybrid r i n g ,  i t  is  

advantageous t o  introduce a normalized i n c i d e n t  wave, a ,  and a normalized 
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reflected wave, b. 

such that 112 aiai* and 1/2 bibi* are equal to the power flow into 

port i and out of port i respectively. The relationship between a and b 

at a lossless junction is given in the scattering matrix,which describes 

all the circuital properties of the junction. 

traveling wave, by at the i'h port of an n-line junction is 

The proportionality constants of a and b are chosen 

For example, the outward 

where Sij is the contribution t o  the outward wave on the ith line 

resulting from the incident wave, a 

reflection coefficient at the ith line is 

at the jth line. Clearly, the j' 

'ii = ri. 

Equation (2) can be extended to form a set of equations which can be 

represented in matrix notation a s  

where the terms S i j  are called the scattering coefficients. 

In the hybrid ring shown in Figure 1, all loads are assumed to 

be external t o  the ring, and all the ports are matched; therefore, 

"Denotes complex conjugate. 
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3x14 

Input 

bl - 
a1 1 

al - 

Fig. 1--Hybrid-ring schematic. 
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the scattering coefficients, as indicated by equation (3), are 

given by 

= s33 = s44 = 0 .  ( 4 )  SI1 = s22 

In addition, there is no coupling between ports 1 and 3 or between 2 

and 4 ;  hence, 

Si3 = S31 = S24 = S42 = 0 .  

The matrix form, 

bl 

b2 

b3 

b4 r -  - 

0 

s2 1 

0 I s4 1 s12 

0 

'32 

0 

0 

'23 

0 

s43 

can be written for the lossless junction. 

I:; a4 
If a sinusoidal excitation 

at port one is assumed, an examination of Figure 1 shows that the 

and 
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1 - j (Bj4  + n/2) 
s34 = s43 - - - r e  (9) 

descr ibe  the  s c a t t e r i n g  c o e f f i c i e n t s .  

(9)  

A comparison of equat ions (8) and 

w i l l  show t h a t  t he  r e l a t i o n  between S14 and S34 i s  given by 

- j n  
s34 = SI4 e 

I n  equat ions (7), (8), and (9) ,  t h e  lengths  of R, and ,13 were taken 

t o  be zero  s ince  both a r e  a r b i t r a r y .  I f  t h e  input  (po r t  1 )  and the  

output  (po r t  3) are t o  be proper ly  matched, then bl and a 

zero.  Under these  condi t ions ,  t h e  expansion of equat ion ( 6 )  y i e l d s  the 

fol lowing s e t  of equat ions:  

must be 3 

bl = S12 a2 + S i 4  a4 = 0 , 

and 

b4 = S41 al . 
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For the purposes of this analysis, let a = r2b2 and a4 =r4b4, 
2 

whereP2 andr4 are the reflection coefficients of ports 2 and 4 

termination respectively. Utilizing these equations in conjunction 

with equations (12) and (14), the equations 

and 

a4 = r4S41al 

will result. If equations (15) and (16)  are combined with equation (ll), 

the result, 

specifies the conditions for a matched input. If it is assumed that 

r 2  =r4, then the nontrivial solution, (that is, al # 0), requires that 

or,by virtue of equations (7) and ( 8 ) ,  the solution requires that 
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From equat ion 1 9 , i t  i s  apparent t h a t  J4 - R2 = h / 4  + - nxf2, where 

n i s  an in t ege r .  

Thus f a r ,  the  r e s u l t s  i n d i c a t e  t h a t  i f  both ,12 and l4 are tenni- 

nated i n  i d e n t i c a l  loads (G =p4), and a r e  sub jec t  t o  t h e  cond i t ion  t h a t  

the d i f f e r e n c e  i n  lengths  of 1, and i s  X/4(n = O), then the  inpu t  

i s  matched. 

combination of equat ions (13), (15), and (16) w i l l  r e s u l t  i n  t h e  

equa t ion ,  

n n 

I f  t h e  c o n d i t i o n  r2 = r4 i s  r e c a l l e d  from t h e  previous development, 

then equat ion (20) can be w r i t t e n  as 

The r e s u l t  of combining equations (7) and (10) with equat ion (21) 

can be w r i t t e n  as 

According t o  equat ion (18), 
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t h e r e f o r e ,  equat ion (22) can be s impl i f i ed  t o  

bg = E Sgl 2 al. 

The s c a t t e r i n g  c o e f f i c i e n t  S21 is described i n  t e r m s  of the junc t ion  

parameters by equat ion ( 7 ) ;  therefore ,  equat ion (24) becomes 

Equation (25) desc r ibes  t h e  output  a t  p o r t  3 i n  t e r m s  of  t h e  input  a t  

p o r t  1 (a ) and t h e  r e f l e c t i o n  c o e f f i c i e n t r .  

hybrid r i n g  is used a s  a phase s h i f t e r ,  1 2  i s  a f ixed  length,  and, 

consequen t ly , i t  i s  unimportant t o  the ope ra t ion  because phase d i f f e r e n t i a l  

i s  obtained by changing t h e  ang le  of r. 
hybrid r i n g  behaves a s  a phase s h i f t e r  which has a matched input and 

ou tpu t  where the  phase s h i f t s  depend upon t h e  terminat ing impedance 

of p o r t s  2 and 4 .  

I n  t h e  case where the  1 

Thus, i t  can be seen t h a t  t he  

From t h e  d e f i n i t i o n s  of a and b y  i t  i s  c l e a r  t h a t  t he  output  power 

and t h e  i n s e r t i o n  l o s s  

Po = 1 /2  b3b3" 

can be calculated using t h e  expressions,  

= 1 / 2 I T *  alal* 

and 



19 

I 

Since it i s  h i g h l y  d e s i r a b l e  t h a t  the i n s e r t i o n  l o s s  be a s  low a s  

poss ib l e ,  t he  n e c e s s i t y  f o r  l a rge  values of r i s  emphasized by equat ion 

I n  summation, the above development demonstrates t h a t  a hybrid 

r i n g  o f f e r s  s a t i s f a c t o r y  decoupling of  i nc iden t  and r e f l e c t e d  waves. 

It shows a l s o  t h a t  t h e  output a t  port  3 i s  dependent upon the  t e rmina l  

load, ZT, connected t o  p o r t s  2 and 4 .  

a r e  v a r i e d  i d e n t i c a l l y ,  t h e  output  a t  p o r t  3 v a r i e s  i n  a manner a s  

descr ibed by equat ions (1) and (25). Whether o r  not  a s u i t a b l e  Z 

can be found can now be considered. 

I f  t h e  loads of p o r t  2 and 4 

T 

B. The PIN Diode 

Phase c o n t r o l  by the r e f l e c t i o n  method must be achieved, a s  

mentioned previously,  by c o n t r o l  of t h e  e f f e c t i v e  terminat ing load 

impedance of a t ransmission l i n e .  Depending upon system requirements, 

t he  phase may be continuously con t ro l l ed ,  o r  con t ro l l ed  i n  d i s c r e t e  s t eps .  

I n  o r d e r  t o  o b t a i n  continuous phase c o n t r o l ,  use can be made of  the 

v a r i a b l e  capaci tance property of a v a r a c t o r  diode. On t h e  o t h e r  hand, 

d i s c r e t e  changes r e q u i r e  two s t a t e  devices  wherein t h e  change i n  s t a t e  

of t h e  device determines the  d i f f e r e n t i a l  phase of t he  output  r e l a t i v e  

t o  t h e  inpu t .  Obviously, t he  va rac to r  diode would perform i n  d i s c r e t e  

increments a s  w e l l  a s  continuously; however, t he  two s t a t e s  suggest a 
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t h i r d  p o s s i b i l i t y ,  and t h a t  i s  a diode which is forward biased f o r  one 

s t a t e  and reverse biased f o r  t h e  second state. 

used f o r  t h e  phase s h i f t e r  under considerat ion.  

This is  t h e  approach 

There a r e  two diodes gene ra l ly  used f o r  microwave frequency switch- 

ing,both of which have s imilar ,  but no t  i d e n t i c a l ,  c h a r a c t e r i s t i c s .  

E i t h e r  a v a r a c t o r  o r  a PIN (P-layer, i n t r i n s i c  l aye r ,  N-layer) diode may 

be used, and the  choice i n  any given s i t u a t i o n  depends upon operat ing 

frequency, power l e v e l ,  i n s e r t i o n  lo s s ,  and switching time. There are, 

of course,  o the r  high-frequency diodes, but  v a r a c t o r  and PIN diodes 

have the  most d e s i r a b l e  c h a r a c t e r i s t i c s ,  and g ive  t h e  most p red ic t ab le  

performance. 

The low-frequency p r o p e r t i e s  of both the  v a r a c t o r  and t h e  PIN 

diodes a r e  very much l i k e  t h e  low-frequency p r o p e r t i e s  of conventional 

diodes.  That is, the impedance of the reverse-biased diode is large,  

and the  impedance of t h e  forward-biased diode i s  small; however, un l ike  

convent ional  diodes,  t h i s  i s  t r u e  a t  microwave frequencies ,  as w e l l ,  

provided t h a t  t h e  frequency of i n t e r e s t  i s  below t h e  s e l f  resonance 

of t h e  diode. It must be recognized, however, t h a t  t h i s  analogy is  

n o t  complete s i n c e  t h e  impedances a t  both low and high frequencies  a r e  

achieved by d i f f e r e n t  m a t e r i a l  mechanisms. 

Most of t h e  microwave p rope r t i e s  of t he  v a r a c t o r  and of t he  PIN 

d iodes  a r e  q u i r e  s i m i l a r ;  however, t he re  a r e  four  s i g n i f i c a n t  d i f f e r e n c e s .  

F i r s t , t h e  v a r a c t o r  j u n c t i o n  capacitance,Ci, is  b i a s  dependent,whereas i n  
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t h e  PIN, Ci remains e s s e n t i a l l y  constant ,  independent of b i a s  cond i t ions ,  

r e g a r d l e s s  of whether t h e  diode i s  biased i n  the  forward o r  reverse 

d i r e c t i o n .  

t h e  high r e s i s t i v i t y  of the I layer .  

r e s i s t a n c e  of  the I l aye r ,  v a r i e s  with reverse b i a s ,  bu t  C .  remains 

cons t an t .  

and rises t o  two o r  t h r e e  times t h i s  value a s  reverse b i a s  i s  increased.  

Second, t h e  average capacitance of a v a r a c t o r  j unc t ion  is a func t ion  of 

s i g n a l  level;  thus,detuning can occur where the  microwave s i g n a l  level i s  

high. Q u i t e  obviously,  t h i s  l i m i t a t i o n  is  r a t h e r  severe i f  high-power 

switching i s  des i r ed .  

Third,  i t  should be obvious t h a t  the reverse-breakdown vol tage of t h e  

diode must be such t h a t  t he  inpu t  microwave vo l t age  swing does not  exceed 

v o l t a g e  breakdown of  t h e  diode, or cause t h e  diode t o  go i n t o  conduction. 

PIN diodes have a d i s t i n c t  advantage because t h e i r  construct ion inc reases  

The constant  Ci i n  the reverse-biased diode r e s u l t s  from 

The r e s i s t a n c e ,  Ri, which is  the  

1 

A t  ze ro  b i a s  Ri i s  i n  the o rde r  of 7.5K ohms t o  10K ohms, 

Since C i  i s  cons t an t  i n  t h e  PIN, t h i s  cannot occur. 

t h e  vo l t age  breakdown l i m i t .  Fourth, t h e  switching time f o r  t h e  v a r a c t o r  

diode i s  f a s t e r  than t h a t  of the PIN because i t  must sweep t h e  i n t r i n s i c  

r eg ion  f r e e  of mobile charge c a r r i e r s  be fo re  switching from the forward 

t o  reverse-biased s t a t e .  Although t h e  PIN diodes switch more slowly 

than t h e  va rac to r  diodes,  switching speeds of  less than 100 nanoseconds 

a r e  p o s s i b l e ;  thus,  va rac to r  diodes enjoy an advantage only when 

extremely f a s t  switching i s  necessary. Because of i t s  d i s t i n c t  
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advantages, the PIN diode was 

system under consideration. 

The PIN diode is made of 

22 

chosen as the switching diode for the 

a wafer of high-resistivity material 

sandwiched between heavily-doped P and N materials as shown in 

Figure 2. When microwave frequencies are applied tolfie reverse-biased 

diode, the I layer behaves as a dielectric with a very slight loss, 

and this accounts for the relative high resistance in the reverse 

direction. However, in the forward-biased condition, conductivity 

modulation causes Ri to drop rapidly with forward current, and at high 

forward currents, the relation 

- K  
7 Ri - 

describes the magnitude of Ri where K is a constant (20 < K < 50), and 

I is the forward bias in milliamperes. 

can be seen that Ri is a variable resistor which is controlled by a 

direct-current bias. The magnitude of Ri is a variable which can range 

from 10,000 ohms in reverse-bias state to 1 to 2 ohms in the forward- 

bias state. Since the minority carrier lifetime is much longer than the 

period of the microwave signal, Ri does not change appreciably over one 

period; thus, R. behaves as a passive resistor. If Ri did change, har- 

monics would be generated in the RF signal. 

i o  
From this relation, it 

1 

Even though longer minority 

I 
I 
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P 

Fig. 2--Semiconductor PIN diode. 
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carrier lifetime is desirable to achieve the constant resistance 

effect, it causes much slower switching times; consequently, a com- 

promise must be made between switching speed and harmonic generation 

in PIN diode design. 

C. Phase Bit Desipn 

The lumped parameter equivalent circuit of the PIN diode is 

shown in Figure 3 .  

L 

Rc is the contact resistance; and Ri is the resistance of the 1 layer. 

Figures 4a and 4b show the equivalent circuit reduction for the 

forward-and reverse-biased states respectively. 

In this figure,C is the package capacitance; 
P 

is the package inductance; C. is the capacitance across the I-layer; P 1 

Before considering the usefulness of diodes as variable impedances 

for transmission-line terminations, some general properties should be 

noted. 

ential can be obtained by having a short circuit (ZT = 0) in one diode 

state, and an open circuit (ZT = m) in the other diode state. Diodes 

are not, however, perfect elements, and neither actual shorts nor open 

circuits can be achieved. Since imperfections do exist, a desirable 

feature would be to minimize the loss, and to make each loss equal in 

the two states, which in turn, would eliminate amplitude variations 

between different phase bits, and eliminate possible amplitude variation 

over the antenna aperture. 

The 180' Phase Bit Desipn: A theoretical evaluation can be made to 

determine the practical limitation of diode switching. For purposes 

of analysis, the diode is made series resonant in the forward-biased 

From a reflection coefficient stand point, a 180' phase differ- 
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Fig .  3--PIN-diode equivalent c i r c u i t  
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Rr I 
I ci 

Fig .  4--Simplified PIN-diode equivalent  c i r c u i t  i n  (a) forward- 
b i a s e d  s ta te ,  (b) reverse-biased state.  
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condition (Figure 4a) by adding a series capacitor. 

condition (Figure 4b) a parallel inductor is added to obtain parallel 

resonance. 

forward state, and a maximum real impedance in reverse-biased state. 

First, the series-resonant case,wherein the impedance is real and equal 

to Rf,is considered. 

In the reverse-bias 

These conditions insure a minimum real impedance in the 

The reflection coefficient in this case is 

n Rf - zo 

and the standing-wave ratio is 

ZO s = - ,  

f 
R 

where Zo is the characteristic impedance of the transmission line. 
n 

r’ For the parallel-resonant case, the impedance is approximately QLR 

and the reflection coefficient is 

and the standing-wave ratio is 

s = - ,  Q2 Et 

zO 
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where Q is defined by the equation, 

1 
Q = ai%- 

Equal loss is desired; therefore, equations (29) and (31) may be 

equated in order to solve for Zo. The result is: 

This equation gives the characteristic impedance of the line in terms 

of the diode parameters for equal losses in the two states. 

To compute the loss for this arrangement, ZO,as found in equation 

(33) can be used in the expression for r . This substitution yields 
the equation, 

Q2Rr - Q r =  
Q2q + Q’m 

11 If, as  Hines suggests CD is defined as: C 

1 - 

’ 
% - 

thenequation (34) may be reduced to, 

(34) 
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, 

I 
% +  1 
w 

I n  t h e  above equat ion w -may be recognized a s  t h e  standing-wave 
w 

r a t i o .  

t he  l o s s  can be approximated by: 

For high standing-wave ~ a t i ~ s ,  as i n  the case  i n  question, 

12 

where w is the  operat ing angular frequency, 

wave r a t i o  of t he  tuned diode. 

The development thus f a r  has  furnished 

(37) 

and S i s  t h e  standing- 
0 

a method of ob ta in ing  

(36 1 

a 180' phase b i t ,  and an expression f o r  expected l o s s  i n  terms of 

diode parameters. 

Small Phase B i t  Design: 

b i t  is  designed, t o  produce small  phase b i t s .  For example, s i n c e  a 

180' phase b i t  makes use of a diode w i t h  low r e a l  impedance i n  the  

forward-biased condi t ion,  and a high r e a l  impedance i n  the  reverse-  

b i a s e d  condi t ion,  i t  is  evident  t h a t  t h e  diode could be used t o  switch 

i n  and out  appropr i a t e  lengths  of l i n e .  This scheme is p r a c t i c a b l e ,  

and i t  is  a c t u a l l y  used i n  some s i t u a t i o n s ,  ( fo r  example, i n  t h e  switched- 

l i n e  type diode phase s h i f t e r ) .  . This diode could a l s o  be used i n  t h e  

r e f l e c t i o n  type phase s h i f t e r  t o  produce small  phase b i t s ,  i n  which case,  

each diode switch i s  backed by a shorted t ransmission l i n e  whose l eng th  

It i s  conceptually very simple, once the  180' 
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i s  chosen such t h a t  t h e  t i m e  delay produces the des i r ed  s h i f t .  Even 

though t h i s  configurat ion i s  simple, it i s  no t  s a t i s f a c t o r y .  A s  a r e s u l t  

of  the presence of t h e  reactance of t h e  shorted transmission l i n e ,  t he  

resonant  condi t ions of t h e  diode switches a r e  d i s tu rbed ;  thus,  unequal 

and excessive l o s s e s  occur. 

Another method of ob ta in ing  smaller phase b i t s  from t h e  tuned diode 

can be devised by making use of transformers.  This method i s  

e a s i l y  demonstrated by making a p lo t  on the Smith Chart a s  shown i n  

Figure 5. 

c i r c l e  toward t h e  generator ,  t he  impedance i s  approximately +jl  and - j l  

f o r  t h e  two diode switch s t a t e s ,  shown a s  p o i n t s  1 and 1' i n  Figure 5. 

I f  t h e  l i n e  impedance i s  decreased a t  t h i s  po in t ,  t h e  two diode s t a t e s  

A t  a p o s i t i o n  of h / 8  along a constant  s tandingwave  r a t i o  

swing toward one another.  A properly chosen l i n e  impedance could 

decrease the b i t  angle t o  90°, 45O, or  22 .5  

phase b i t s .  

3 - 3 ' ,  and 4-4' r e spec t ive ly .  Values f o r  t he  l i n e  impedance can be 

c a l c u l a t e d  using data  obtained from the  Smith Chart .  It should be 

noted t h a t , i n  t h i s  p a r t i c u l a r  scheme,each diode switch i s  tuned t o  

series and p a r a l l e l  resonance i n  i t s  two s t a t e s .  

0 
a s  desired f o r  t h e  smaller  

These po in t s  a r e  shown i n  Figure 5 and a r e  labeled 2-2',  

A s i m i l a r  method f o r  obtaining smaller  b i t s  can be devised by 

us ing  t ransformers  and tuning elements placed on the t ransmission 

l i n e .  The method has the advantage of not  r equ i r ing  ind iv idua l  diode 

tun ing  a s  would be the case if t h e  resonant  diode switch is  used. Without 

i n d i v i d u a l  t un ing ,d i r ec t - cu r ren t  c o n t r o l  can be f a c i l i t a t e d  without t h e  use 
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of  a low-pass f i l t e r  t o  block t h e  radio-frequency cu r ren t  from t h e  

d i r e c t - c u r r e n t  supply; furthermore,the cons t ruc t ion  problem of tuning 

i s  s impl i f i ed .  

F i r s t ,  a l i n e  impedance which gives approximately equal  loss i n  each 

of  t h e  untuned s t a t e s  is  se l ec t ed .  

mated using t h e  expression, 

The method is  adopted i n  t h e  phase s h i f t e r  under study. 

The l i n e  impedance can be approxi- 

which can be derived by equating the r e f l e c t i o n  c o e f f i c i e n t  a s soc ia t ed  

w i t h  t h e  forward-biased and t h e  reverse-biased s t a t e s .  

Z i s  not  r e a l  f o r  a l l  choices of complex impedance. However, i f  

nominal va lues  of diode impedance are assumed, the dominant f a c t o r  i n  

equa t ion  (38) is, 

Quite obviously,  

0 

2o Q JRF, (39) 

which is the  same a s  derived f o r  the tuned diode switch. The 

va lue  obtained from equation (39) i s  a good approximation. 

normalized admittance p l o t  i s  shown i n  Figure 6. Po in t s  1-1' are  

t y p i c a l  normalized admittances of  t h e  forward-biased diode and reverse-  

b i a s e d  diode r e spec t ive ly .  

is h ighe r  t han  50 ohms depending, of course,  on the  diode. A t  t he  

p o i n t  a long a constant  vo l t age  standing-wave r a t i o  c i r c l e  where the  

A t y p i c a l  

Normally Zoy a s  ca l cu la t ed  f o r  equat ion (39) ,  

forward-biased diode impedance is minimum (points  2-2'),  a s t e p  t o  
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F i g .  6--Smith Chart representation oftransformer switch method. 
Point8 and crossee represent the forward-and reverse-biased diode conditions 
rcrpec tively. 
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a 50-ohm l i n e  can be placed. 

move both admittance p o i n t s  of t he  forward-and reverse-biased diode 

s t a t e s  toward the  ou te r  c i r c l e  and toward a higher r e f l e c t i o n  c o e f f i c i e n t .  

This s t e p  change i s  shown i n  Figure 6 a s  p o i n t s  2-2'  t o  3-3'  r e s p e c t i -  

vely.  

t he  angle  between forward-biased s t a t e  and reverse-biased s t a t e  decreases.  

Through t h e  proper choice of the open t ransmission l i n e  length,  e i t h e r  

a 90°, a 45' o r  a 22.5' phase b i t  can be obtained. 

angle  change, bu t ,  a s  can be observed on the Smith Chart ,  t h e  magnitude 

of t h e  r e f l e c t i o n  c o e f f i c i e n t  increases ,  thereby decreasing the  

e f f e c t i v e  switch l o s s .  As one m i g h t  expect,  equal l o s s e s  might not 

r e s u l t  using t h i s  technique; however, experimental  r e s u l t s  show t h a t  

The e f f e c t  of t h i s  s t e p  change i s  t o  

By adding a capac i to r  a t  t h i s  p o i n t  (open transmission l i n e ) ,  

Not only does the  

t h e  amplitude t a p e r  i s  usua l ly  less than .1 db. One advantage, which i s  

n o t  t o  be overlooked, i s  t h a t  manufacturing to l e rances  i n  diodes can 

be compensated f o r  ve ry  e a s i l y  by a d j u s t i n g  the  open-ended t r ans -  

mission l i n e .  

I n  order  t o  determine the t h e o r e t i c a l  l o s s  c h a r a c t e r i s t i c  f o r  the 
11 

smal l  b i t ,  a fundamental switching theorem i s  used. The theorem 

s t a t e s ,  t h a t  i n  an a r b i t r a r y  r e c i p r o c a l  passive l i n e a r  network containing 

an i d e a l  switch,  t he  change i n  dr iving-point  impedance a t  any p o r t  i s  

expressed by t h e  vec to r  equat ion,  
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where KO and cc a r e  the r e f l e c t i o n  c o e f f i c i e n t s  a t  t h e  p o r t  of  

i n t e r e s t  when t h e  switch i s  i n  the open-circuit  o r  t he  c l o s e d - c i r c u i t  

cond i t ion  r e spec t ive ly .  I 

t h e  switch when closed and opened r e spec t ive ly ,  assuming t h a t  a 

and Vso a r e  t h e  cu r ren t  and vo l t age  a t  s c  

cons t an t  res is t ive impedance generator i s  a t t ached  t o  the  input p o r t  

whose s h o r t - c i r c u i t  c u r r e n t  i s  21L, and wnose open-c i r cu i t  vclltags 

i s  2VL. 

referenced a r t i c l e .  I f  i t  is  assumed t h a t  

A proof of t h i s  theorem can be found i n  t h e  appendix of the 

then by elementary manipulation, the r e s u l t ,  

i s  obtained where LB i s  t h e  phase increment. Equations (40) and (42) 

can be combined, and the  equat ion,  

w i l l  r e s u l t .  

neglected without s i g n i f i c a n t  e r ro r .  

Since Irl is  approximately equal  t o  u n i t y  i t  can be 

It i s  d e s i r a b l e  t o  introduce a q u a n t i t y ,  p ,  which i s  a measure of 

switch l o s s .  The l o s s  r a t i o , p , i s  defined a s  
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Power d i s s i p a t e d  i n  diode 
P =  Power i n  inc iden t  wave 

If a vo l t age  Vso is  appl ied t o  the  reverse-biased diode (Figure 4b), 

t h e  power d i s s i p a t e d  i n  the  diode i s  given by t h e  expression, 

2 - Vso R r  

u, c1 

1 
2 2  

Rr2 + 'dr 

(44 1 

(45) 

If i t  is  assumed t h a t  t h e  Q of t he  diode is high ( 

above expression can be s impl i f i ed ,  and the r e s u l t  i s  

2 2  2R 
= vso LL) ci . 'dr r 

Hence, t he  loss  r a t i o  i s  found t o  be 

2 2  2 
'so a 'i Rr 

v ~ l ~  

If both t h e  numerator and denominator of equation (47) a r e  mul t ip l i ed  

by Isc, and t h e  d e f i n i t i o n  of Q i s  u t i l i z e d ,  t h e  equation, 
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w i l l  r e s u l t .  If t h e  r e l a t i o n ,  

i s  used f o r  t he  forward-biased case (Figure 4a ) ,  a s i m i l a r  expression 

f o r  t h e  loss r a t i o  i s  found t o  be, 

(49)  

I f  t he  two l o s s  r a t i o s  are se t  equa l ,  t he  so lu t ion ,  

w i l l  r e s u l t  which i s  p r e c i s e l y  the c h a r a c t e r i s t i c  impedance obtained 

p rev ious ly .  I f  expressions (51) and (48 )  a r e  combined, then the l o s s  

ra t i o  be c ome s 

By making use of t he  previously defined cu t -o f f  frequency (mc), 

equa t ion  (52) can be r e w r i t t e n  i n  the  form 
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If equat ions ( 5 3 )  and (43) a r e  combined the equation, 

c 8 w  p = 4 s i n -  - , 
2 O C  

( 5 4 )  

w i l l  r e s u l t .  From the  d e f i n i t i o n  of  p,  i t  i s  c l e a r  t h a t  t he  equation, 

P = 1 - lrI2 , 

desc r ibes  p i n  terms of t he  r e f l e c t i o n  c o e f f i c i e n t .  S i n c e p i s  

r e l a t e d  t o  the  standing-wave r a t i o  S by the  equat ion,  

s- 1 in = - , 
s+l 

equat ion (55) can be solved f o r  S i n  terms of t he  l o s s  r a t i o .  

I f  a t t e n t i o n  is r e s t r i c t e d  t o  the case where p < < 1, the s tanding-  

wave r a t i o  i s  found t o  be 

4 

P 
s s - .  

( 5 5 )  
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When i t  is  r e c a l l e d  t h a t  !k i s  equal t o  the standing-wave r a t i o  of  

the tuned diode switch and when equations (57) and (54)  a r e  combined, 

t h e  standing-wave r a t i o  of t he  diode used f o r  smaller  phase b i t s  i s  

seen t o  be r e l a t e d  t o  t h e  standing-wave r a t i o  of t he  tuned diode 

switch through t h e  combined equation, 

w 

where So i s  t h e  standing-wave r a t i o  of t he  tuned diode switch and nS 

i s  the  phase increment. The equation, 

17.4 ne 
2 ’  loss - db = - . s i n  

S O  
(59) 

which i s  a combination of equations (58) and (371, r e l a t e s  t h e  l o s s  

i n  t h e  small  phase b i t s  to  t h a t  of t h e  180° b i t .  

Power C a p a b i l i t i e s :  Thus f a r ,  the development has d e a l t  p r imar i ly  

w i t h  t h e  cons t ruc t ion  of the b i t s ,  and wi th  i n s e r t i o n  loss. 

another  important area i s  t h a t  of power-handling c a p a b i l i t i e s .  For the  

purpose of a n a l y s i s ,  t he  reverse-bias  vo l t age  breakdown is  considered 

t h e  l i m i t a t i o n  on power-handling c a p a b i l i t i e s .  F i r s t  of a l l ,  it should 

be recognized t h a t  diodes do have l i m i t s  a s  t o  the maximum vol tage 

they  w i l l  wi thstand i n  the reverse d i r e c t i o n .  With vol tage breakdown 

a s  t h e  c r i t e r i o n ,  i t  is poss ib l e  t o  o b t a i n  maximum power r e l a t i o n s  i n  

t e r m s  of diode breakdown vol tage.  

However, 
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0 The power l i m i t a t i o n  i n  the  180 b i t  i s  considered f i r s t .  If i t  

i s  assumed t h a t  t h e  reverse-bias  diode is e s s e n t i a l l y  an open c i r c u i t ,  

i t  is  evident from transmission l i n e  cons ide ra t ions  t h a t  t h e  maximum 

vo l t age  ac ross  the  diode i s  

'Bd = 21E'I (60) 

+ 
where E 

t h e  r eve r se  breakdown vol tage of  the diode. 

i s  t h e  maximum value of the inc iden t  vo l t age  wave, and VBd i s  

The power associated with 

t h e  inc iden t  wave i s  given by the  equation, 

where Zo i s  t h e  c h a r a c t e r i s t i c  impedance of t h e  l i n e .  

equat ions (60) and (33) i n t o  equation (61) y i e l d s  the  r e l a t i o n  f o r  

maximum power which i s  

S u b s t i t u t i o n  of 

.-I 
L 

'Bd 
= 118 QG 'max 

0 
Since t h e  vo l t age  ac ross  the diode i s  maximum i n  the  180 phase b i t ,  

t h i s  might w e l l  be considered the "worst case."  
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I n  order  t o  obta in  a power r e l a t i o n  f o r  the  smaller  phase b i t s ,  

use is  made again of the'fundamental  switching theorem. The form 

of  i n t e r e s t  i s  given by equat ion ( 4 3 )  which is recorded aga in  a s  

na - I I S C  V S O ,  
I 4 sill - - I 

where IrlSl. and Vso a r e  

t h e  maximum cur ren t  and vol tage  allowable,  then the  expression f o r  

maximum power i s  given by 

If the  switch is  designed such t h a t  I 
sc 

where t h e  product,  IL VL, i n  equation ( 4 3 )  is recognized a s  the  input  

power andfiVso = VBd- From t h i s  equat ion,  i t  i s  apparent t h a t  t h e  

power-handling c a p a b i l i t i e s  increase fo r  smaller  phase b i t s .  When 

equat ions  ( 6 3 )  and (62)  a r e  compared, t he  expression,  

can be formed which i l l u s t r a t e s  t h a t  t he  requi red  breakdown vol tage  
ns 

f o r  t he  smal le r  phase b i t s  decreases  by the  amount of J s i n  2 f o r  a 

g iven  power l e v e l .  

I 
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In the preceding paragraphs, expressions for losses and power- 

handling capabilities were derived in terms of diode parameters. It 

was shown that the losses and power-handling capabilities of smaller 

phase bits were related to the like quantities of the 180' bit. For 

both the loss factor and the power-handling capabilities, it should be 

noted that the limitations are imposed by the 180° bit. 

A technique can be devised to optimize maximum power-handling 

capabilities in those instances when it is assumed that the breakdown 

of the diode is the limiting factor. Since the voltage across the diode 

is a function of transmission-line impedance, the voltage across a diode 

can be decreased significantly by lowering the transmission-line 

impedance. In order to do this, and at the same time maintain equal 

losses in both states, the reactance as contained in the expression 

for Zo, must be decreased. 

increasing the junction area of the diode, or ,  alternatively, by 

placing several diodes in parallel. Because there is a practical lower 

limit on transmission-line impedance, the method is thereby limited. 

The reactance decrease may be achieved by 

Although reverse breakdown was assumed to be the limiting factor 

in power-handling capability, it is not always the case. If,for 

example, the frequency is extremely high, the limitation may result 

from excessive heating in R and Rf. On the other hand, if the 

frequency is low, the RF current peaks should not exceed the average 

forward bias current or else the RF waveform will be distorted. Thus, 

care should be exercised when designing in these areas. 

r 
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111. DESIGN CONSIDERATION 

Since t h e r e  i s  more than one way t o  design a diode phase s h i f t e r ,  

i t  i s  d e s i r a b l e  t o  consider the r e l a t i v e  advantages i n  each scheme. 

Figures  (7)  and (8) show schematics of t he  o t h e r  methods of diode phase 

s h i f t i n g ,  namely, t he  switched-line and t h e  transmission-type phase 

s h i f t e r .  

I n  Figure 7 ,  i t  should be noted t h a t  four  diodes a r e  required f o r  

each phase b i t  i n  t h e  switched-line scheme; hence, s i x t e e n  a r e  necessary 

f o r  a fou r -b i t  phase s h i f t e r .  Moreover, the t ransmission type, Figure 

8 ,  may r e q u i r e  twice a s  many diodes for a 360' phase s h i f t .  

t ransmission type r e q u i r e s  more diodes because the  phase increments 

must be kep t  small ,  u sua l ly  i n  the  order  of 22.5'. In the  previous 

d i scuss ion  of t h e  hybrid type, i t  was pointed ou t  t h a t  only two diodes 

were necessary f o r  each phase b i t ;  thus, only e i g h t  a r e  required 

f o r  a f o u r - b i t  phase s h i f t e r .  Obviously, t h e  hybrid type r e q u i r e s  t h e  

fewest number of diodes f o r  a 360° phase s h i f t i n g  c a p a b i l i t y .  

The 

Because t h e  phase b i t s  a r e  symmetrical, t he  lo s ses  i n  the switched- 

l i n e  type  phase b i t  a r e  i d e n t i c a l  f o r  each s t a g e ;  t he re fo re ,  t h e  t o t a l  

l o s s  f o r  a fou r -b i t  phase s h i f t e r  w i l l  be four t i m e s  the  l o s s  of one 

phase b i t .  The l o s s  f o r  an optimum phase b i t ,  i n  t h i s  method, i s  

approximately the same a s  t h a t  fo r  a 180° phase b i t ;  t he re fo re ,  the l o s s  

w i l l  be four  t i m e s  t h a t  of the 180° b i t  f o r  a four-bi t  phase s h i f t e r .  

43 
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Input 

c el _I 

State one: 
State two: 

Dlls are forward biased, D2's are reversed bias. 
D2's are forward biased, D Is are reversed bias. 

1 

Fig. 7--0ne-bit switched-line phase shifter. 
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Inpu t  

* I 

jx 

Dl 

Bias 
Network 

Bias 
Network 

output  

I I 

S t a t e  one: D and D are forward biased 
S t a t e  two: D1 and D2 are reverse biased 1 2 

Fig .  8--0ne-bit p e r i o d i c a l l y  loaded t ransmission type phase s h i f t e r .  
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On t he  other  hand, it w a s  noted tha t  t he  loss i n  the  hybrid method w a s  

maximum fo r  the  180' phase b i t ,  and w a s  decreased by 1 s i n  -1 f o r  the 

smaller b i t s  where c8 is the  phase increment. Therefore, the lo s s  

f o r  a four-bi t ,  360 phase s h i f t e r  w i l l  be approximately 2.3 times 

t h a t  of the 183' phase b i t ,  It can be seen from t h i s  comparison t h a t  

t he  hybrid-type phase s h i f t e r  is de f in i t e ly  superior t o  the  switched- 

l i n e  type, a t  least i n  terms of inser t ion  loss. 

fY 
2 

0 

A similar inse r t ion  loss comparison can be made between the  

hybrid-type and the transmission-type phase s h i f t e r s .  I n  t h i s  case,  

however, t he  comparison i s  a l i t t l e  more sub t l e  and requires  a b i t  

of manipulation. Equation (59), 

17.4 - s i n  - 
2 '  loss db = 

may be recal led from previous development. This is  the expression for  

t he  lo s s  of a small phase b i t  where 7 17*4 i s  the  loss  fo r  a 180° phase 
0 

b i t ,  and B i s  the phase increment. 

i s  achieved by cascading 

from the  expression, 

Since a 360° phase s h i f t  capabi l i ty  

2Jr sect ions,  the t o t a l  loss can be computed 

A3 - 
0 
L 17.4 2fl s i n  

loss  db = S 2 ' - Le 9 
0 

2 

where &3 i s  the  phase increment i n  radians. 
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s i n  C6 - 
2 

For s m a l l  phase b i t  angles ,  t he  term is  approximately uni ty .  - 
2 

This approximation is v a l i d  s ince  t h e  increment angles  are i n  the  

order  of 22.5O or  less. 

phase s h i f t e r  w i th  360' phase c a p a b i l i t i e s  i s  approximately 3.14 t i m e s  

t h e  l o s s  of a 180 phase b i t .  On t h e  b a s i s  of  t h i s  c m p r i s o n ,  i t  can be 

Thus, t h e  t o t a l  l o s s  f o r  a transmission-type 

0 

concluded t h a t  the hybrid-type phase s h i f t e r  has a smaller i n s e r t i o n  

l o s s  than both the  switched- l i n e  and the transmission- type phase s h i f t e r s .  

A less s a l i e n t  f e a t u r e  of t h e  hybrid-type phase s h i f t e r  i s  t h a t  

t he  input  power i s  divided i n t o  ha lves ,  and each h a l f  i s  inc iden t  upon t h e  

te rmina t ing  diode. A s  a r e s u l t ,  t he  power-handling c a p a b i l i t y  of t h e  

phase s h i f t e r  i s  twice t h a t  of ind iv idua l  diode. However, t h e  advantage 

i s  l o s t  i n  t h e  180° b i t  t o  some ex ten t ,  because the  terminal vo l t age  a t  

t h e  diode i s  doubled when the  diode i s  i n  i t s  high-impedance state. It 

w a s  shown previous ly  t h a t  t h e  required breakdown vol tage  f o r  t h e  smaller 

phase b i t s  was decreased by ip ; t he re fo re ,  t he  breakdown vol tage  

l i m i t  i s  r e l i e v e d ,  t o  some e x t e n t ,  i n  t he  smaller  b i t s .  I n  t h e  case of 

t he  swi tched- l ine  type ,  where vol tage  doubling does not  occur,  t h e  break- 

down of t h e  diode must be such t h a t  i t  w i l l  wi thstand only t h e  maximum 

value  of t h e  inc iden t  wave. Thus, the switched-l ine type w i l l  handle 

g r e a t e r  power. Fur ther  mention w i l l  be made of t h i s  i n  the  conclusion. 

I n  t h e  mechanical design of t h e  hybrid coupler ,  which i s  t o  be 

used as a phase s h i f t e r ,  c e r t a i n  conf igura t ions  must be considered. 

Since one of t h e  primary app l i ca t ions  of a phase s h i f t e r  i s  t o  fu rn i sh  phase 
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s h i f t s  i n  antenna a r r a y s ,  t h e  need f o r  s i m p l i c i t y  i s  emphasized by the  

number of phase s h i f t e r s  involved. Thus, i t  i s  d e s i r a b l e  f o r  the  method 

of cons t ruc t ion  of t h e  hybrid coupler t o  possess  the  fo l lm- ing  charac- 

t e r i s t i c s  : 

1. Simple mechanical design 

2. Allowance f o r  diode connections 

3 .  Easi ly  cons t ruc ted  tuning element 

4. Low l o s s  

5. An arrangement whereby the  c h a r a c t e r i s t i c  impedance of the 

t ransmission l i n e  can e a s i l y  be used as a design parameter 

Although s tandard coax ia l  and a i r - d i e l e c t r i c  l i n e s  can be used, 

they are d e f i c i e n t  i n  some of t h e  areas enumerated above. On the  o ther  

hand, a f l a t - s t r i p  t ransmission l i n e  possesses  a l l  the  above charac- 

t e r i s t i c s .  For example, wi th  a f l a t - s t r i p  l i n e ,  t h e  hybrid coupler can 

be produced by using etched-circui t -  techniques.  Diodes can be connected 

d i r e c t l y  t o  t h e  f l a t - s t r i p  l i n e ,  and tuning elements a r e  produced wi th  

s t r i p l i n e  by e tch ing  process.  I n  good d i e l e c t r i c s ,  losses  a r e  l o w ,  and 

l i n e  impedance can  be changed simply by changing the  f l a t - s t r i p  width. 

I n  view of these  c h a r a c t e r i s t i c s ,  a f l a t - s t r i p  l i n e  method of cons t ruc t ing  

hybr id  couplers  would s a t i s f y  t h e  condi t ions.  

The f l a t - s t r i p  t ransmission l i ne  ( s t r i p l i n e )  c o n s i s t s  of a f l a t  

c e n t e r  s t r i p  conductor sandwiched between d i e l e c t r i c  mater ia l .  

ou t s ide  of t h e  d i e l e c t r i c  ma te r i a l  i s  bounded by conducting ground 

p lanes .  A s t r i p l i n e ,  l i k e  a standard coax ia l  l i n e ,  supports  t he  TEM 

The 
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mode; thus, a s t r i p l i n e  and a standard coaxial  l i n e  have a grea t  

dea l  i n  comnon. , 

A s  one would expect from such a configuration, t he  c h a r a c t e r i s t i c  

impedance of a s t r i p l i n e  is a function of the  d i e l e c t r i c ,  of the  l i n e  

thickness,  of the  l i n e  width, and of the conducting plane separation. 

Since a s t r i p l i n e  supports the TEM mode, l i n e  impedances can be 

obtained using mapping techniques. Several authors have derived 

expressions f o r  the c h a r a c t e r i s t i c  impedance of s t r i p l i n e s ;  however, 

t he  most widely read and accepted publication i s  t h a t  of S .  B. Cohn. 
13 

I n  h i s  a r t i c l e  Cohn shows t h a t  the cha rac t e r i s t i c  impedance of a s t r i p  

transmission l i n e  i s  given by 

94.15 - \ '  
/ Cf zo - 

q [ $ b  .0885 cr ) 

where 

d/ cm 

and w/(b  - t) >. 35 .  

I n  t h i s  expression, b i s  the  conducting plane separat ion,  E is  the 

relative d i e l e c t r i c  constant ,  w i s  the width of the  center  s t r i p ,  and 

t i s  the  thickness of the center  s t r i p .  For a given s t r i p l i n e  mater ia l ,  

the  r a the r  formidable looking expression above becomes qu i t e  simple. 

For example, i n  the  case where 2, C 75 ohms, t he  width i n  inches of 

t he  s t r i p l i n e  f o r  t he  material used i n  the experimental model of the  

r 
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phase shifter can be calculated by the expression, 

15.07 w = -  - .114 , 
ZO 

where Zo is the desired characteristic impedance. 14 

On the other hand, for cases where w/(b - t) >.35, the characteristic 

impedance can be calculated by the expression, 

- 60 4b Zo - - an - Y 

VEr *aO 

where E 

separation and a, is the diameter of an equivalent cylindrical conductor. 

The relation for the equivalence between rectangular and circular 

cross sections was derived by Flamn~er,'~ and is usually displayed in 

graphical form; thus, the determination of the characteristic impedance 

of a narrow transmission line is usually performed graphically. 

There are several handbooks which furnish complete sets of design 

curves for design work. 

is the relative dielectric constant, b is the ground plane r 

In the system under consideration, power requirements are not 

expected to exceed three watts per diode switch; therefore, the 

minimum reverse-breakdown voltage allowable for the doide is less than 

100 volts. Since PIN diodes with reverse breakdowns in excess of 100 

volts are comrcially available, there is no need for special diodes. 

Several manufacturers produce such diodes, and these diodes are becoming 

relatively inexpensive. 

dictated primarily by diode package, allowable loss ,  and cost. 

The final choice of diodes in this case is 



IV.  EXPERIMENTAL RESULTS 

t 

I 

Because diode impedance i s  inf luenced,  t o  some e x t e n t ,  by mounting 

conf igura t ion ,  i t  w a s  f i r s t  necessary t o  measure the  diode impedance i n  

each s ta te  f o r  t he  mounting conf igura t ion  se lec ted .  These measurements 

w e r e  made a t  1.8 Gc on a s l o t t e d  l i n e  and they agree favorably with the  

nominal va lues  suggested by the  diode manufacturer. 

was determined t h a t  t he  mounting conf igura t ion  chosen d id  not  s i g n i f -  

i c a n t l y  a f f e c t  t he  diode impedance. 

By t h i s  means, i t  

Four phase b i t s  ( M O O ,  90°, 45O, 22.5') were constructed using 

s t r i p  t ransmission l i n e s  wi th  diodes as the  r e f l e c t i n g  elements, and 

open t ransmiss ion  l i n e s  were used as  tuning elements. For the  diode 

s e l e c t e d ,  approximate equal loss i n  the  two diode states f o r  the  snaller 

phase b i t s  can be obtained by using 70 ohms as the  c h a r a c t e r i s t i c  

impedance of the  terminat ing sect ion.  I n  the  case of t he  180' phase 

b i t ,  however, a 100-ohm c h a r a c t e r i s t i c  impedance had t o  be used i n  

order  t o  ob ta in  equal  l o s s  f o r  each state. 

l i n e s  w e r e  u l t ima te ly  transformed to 50 ohms so t h a t  t h e  input  and 

output  of t h e  phase s h i f t e r  w a s  a t  t he  50-oh l eve l .  Each diode w a s  

terminated i n  a low-impedance capac i tor  which w a s  used as the  r - f  

f i l t e r  f o r  one d-c c o n t r o l  l i n e .  The o ther  d-c con t ro l  l i n e  w a s  

connected t o  t h e  cen te r  s t r i p  of the t ransmission l i n e  by a shorted 

quarter-wave s tub.  The diodes were biased wi th  90 v o l t s  i n  the  

reverse-b iased  s t a t e ,  and wi th  100 mill iamperes i n  the  forward- 

b i a sed  state. 

I n  a l l  four  b i t s ,  a l l  

51 
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Figures (9) and (10) show b i t  l o s s  and phase s h i f t  versus frequency 

f o r  t h e  band 1.77 - 1.83 Gc. 

were obtained by measured minimum s h i f t s  and r e f l e c t i o n  c o e f f i c i e n t s  

on a s l o t t e d  l i n e .  

over a 30-Mc. band cen te red  a t  1.8 Gc. 

.45, .35, - 2  and .2 db f o r  t h e  N O 0 ,  90°, 45O, and 22.5 b i t s  r e spec t -  

i v e l y .  These ind iv idua l  phase b i t  l o s ses  correspond t o  a t o t a l  

i n s e r t i o n  loss of 1.2 db f o r  t he  cascaded sec t ions .  

The phase s h i f t  angle  and the  l o s s  d a t a  

The curves show t h a t  t h e  phase is  w i t h i n  3.5' 

The l o s s e s  were approximately 
0 

The i n d i v i d u a l  r e f l e c t i n g  elements were used i n  conjunction w i t h  

a hybrid r i n g  t o  produce a phase s h i f t  b i t  w i th  matched input  and ou tpu t ,  

Four s e c t i o n s  of t hese  hybrid r i n g s  were cascaded t o  produce a four- 

b i t  phase s h i f t e r .  The phase s h i f t e r  i s  capabable of producing a 

t o t a l  of 360' of phase s h i f t  i n  22.5' increments. 

a completed f o u r - b i t  phase s h i f t e r .  

Figure (11) shows 

The completed f o u r - b i t  hybrid phase s h i f t e r  w a s  then t e s t e d .  Table 

(1) shows t h e  vo l t age  standing-wave r a t i o  and t h e  i n s e r t i o n  lo s s  f o r  

each phase increment through 360'. Figure (12) shows the  standing-wave 

r a t i o  ve r sus  frequency f o r  t he  band of 1.77-1 83 Gc. 

To explore  f u r t h e r  t he  p r a c t i c a l i t y  of d ode phase s h i f t e r s ,  a 

diode d r i v e r  must n e c e s s a r i l y  be considered. Quite o f t e n  extended 

switching t i m e s  adversely a f f e c t  t he  t r ack ing  system; thus,  switching 

t i m e s  are important.  

The func t ion  of t he  d r i v e r  i s  t o  supply s u i t a b l e  b i a s  f o r  t h e  

diode when given command s i g n a l s  from t h e  l o g i c  sec t ion .  Since each 
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phase bit utilizes two diodes in parallel, the driver must be designed 

so as to furnish 200 ma at - 1 volt in the forward-biased condition, 
and + 90 volts in the reversed-biased condition. A diode driver 

was constructed which furnished the necessary diode bias. Figures 

(13) and (14) show picturss of the switching wave forms as recorded 

from a model 531 Textronix Oscilloscope. These figures reveal that 

diode switching can be accomplished in less than 100 nanoseconds. 
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F i g .  9--Phase and loss c h a r a c t e r i s t i c s  of  (a) 180°, (b)  90 0 
phase b i t s .  The da ta  was obtained using a s l o t t e d  l i n e .  
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Fig. 10--Phase and lo s s  c h a r a c t e r i s t i c s  of  (a) 45O, (b)  22.5' 
phase b i t s .  The d a t a  was obtained using a s l o t t e d  l i n e .  
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Fig. 11--A photograph of a f o u r - b i t  hybr id  phase shifter. 
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TABLE 1 

INSERTION LOSS AND VOLTAGE STANDINGWAVE RATIO MEA UREMENTS H FOR PHASE S H I F T S  TO 360° I N  22.5O INCREMENTS 

VOLTAGE S T A N D I N G  INSERTION PHASE S H I F T S  

DEGREES WAVE RATIO LOSS db 

0 

22.5 

1.23 

1.25 

1.1 

1.2 

45 1.28 1.2 

67.5 1.35 1.2 

90 1.20 1.0 

112.5 1.25 1.1 

135 1.05 1.0 

157.5 1.06 1.0 

180. 1.18 .95 

202.5 1.21 .95 

225 1.06 .95 

247.5 1.09 .95 

2 70 1.13 .95 

292.5 1.19 .95 

3 15 1.17 .95 

33 7 1.24 .95 

'Measurements were taken at 1.8 Gc. 
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v- I lilie . .- 

( a )  Input voltage to driver ( h o r i z o n t a l  sca le :  0.1 us/div.) 



60 

Time  

( a )  Input voltage to d r i v e r  (ho r i zon ta l  s ca l e :  0.1 us/div . )  

rl 
Q 

N 
8 

(b) Phase s h i f t  (horizontal  s ca l e :  0.1 uses /d iv . )  

Fig. l4--Fall- time waveforms 



V. CONCLUSIONS 

This s tudy has  presented t h e o r e t i c a l  and design cons idera t ions  

f o r  t h e  des ign  of a hybrid-type diode phase shifter. 

making use  of t he  Smith Chart w a s  descr ibed,  and t h i s  technique w a s  

used t o  design the  des i red  phase increment. A fou r -b i t  phase s h i f t e r  

f o r  a n  S-band frequency w a s  constructed and t e s t e d .  The r e s u l t s  of 

t he  test  agree s a t i s f a c t o r i l y  wi th  the t h e o r e t i c a l  p red ic t ions .  

A technique 

I n  t h e  Design Considerat ion Sect ion,  it w a s  shown t h a t  t h e  hybrid- 

type  phase s h i f t e r  had two d i s t i n c t  advantages over both the  switched- 

l i n e  and the  transmission-type phase s h i f t e r s .  It w a s  noted t h a t  the  

hybrid-type phase s h i f t e r  requi red  the fewest d iodes ,  and a l s o  had the  

lowest i n s e r t i o n  lo s s .  The presence of  e i t h e r  of these  c h a r a c t e r i s t i c s  

would be enough t o  recommend the  hybrid phase s h i f t e r ,  and t h e  presence 

of both emphasizes i t s  s u p e r i o r i t y  over t he  o ther  types.  There i s  only 

one area i n  which the  hybrid phase s h i f t e r  i s  i n f e r i o r  t o  the  o the r s ,  

and t h a t  i s  t h a t  i t  does not  have as high a puwer-handling c a p a b i l i t y .  

However, PIN diodes wi th  reverse breakdowns of 700 v o l t s  ( increas ing  

t h e  power c a p a b i l i t y  of diode switches t o  more than  100 w a t t s  average) 

have r e c e n t l y  been placed on t h e  market. 

t h i s  disadvantage would occur only i n  those s p e c i a l  cases  where a r r a y  

power must be extremely high. 

Thus, i t  would s e e m  that 

6 1  
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In view of t h e  experimental  r e s u l t s ,  and i n  view of t h e  advantages 

of t h e  hybrid-type phase s h i f t e r  discussed above, a hybrid phase s h i f t e r  

must be considered a most s a t i s f a c t o r y  type of phase s h i f t e r  f o r  f r e -  

quencies i n  t h e  S-band region. 
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